Single-molecule and super-resolution microscopies in biology: taking the best of fluorescent dyes, gold nanoparticles and carbon nanotubes

Laurent Cognet

Laboratoire Photonique Numérique et Nanosciences (LP2N) IOGS, CNRS et Université de Bordeaux Institut d'Optique d'Aquitaine, rue François Mitterrand 33405 Talence cedex France

E-mail: laurent.cognet@u-bordeaux.fr

The optical microscopy of single molecules has recently been beneficial for many applications, in particular in biology. It allows a sub-wavelength localization of isolated molecules and subtle probing of their spatio-temporal nano-environments on living cells. It also allows designing innovative strategies to obtain super-resolved optical images i.e. with resolution below the diffraction limit.

For many single-molecule microscopy applications, more photostable nanoprobes than fluorescent ones are desirable. For this aim, we developed several years ago far-field photothermal methods based on absorption instead of luminescence. Such approaches do not suffer from the inherent photophysical limitations of luminescent objects and allows the ultra-sensitive detection and spectroscopy of tiny absorbing individual nano-objects such as gold nanoparticles down to 5 nm in cells or carbon nanotubes. In order to access confined cellular environment (adhesion sites, synapses etc...), I will present our current efforts to reduce the functional nano-objects sizes as well as to use new near infrared nanoprobes.

The second part of my presentation will be dedicated to the presentation of super-resolution microscopy methods. It is indeed crucial to study a large ensemble of molecules on a single cell while keeping the sub-wavelength localization provided by single molecule microscopy. In order to study the dynamical properties of endogenous membrane proteins found at high densities on living cells we developed a new single molecule super-resolution technique, named uPAINT. Interestingly, uPAINT does not require the use of photo-activable dyes allowing easy multi-color super-resolution imaging and single molecule tracking. Different applications of uPAINT will be presented, in particularly the first demonstration of super-resolution imaging of functional receptors in interaction. This last result was obtained combining super-resolution microscopy and single molecule FRET.

References

- « Super-resolution microscopy approaches for live cell imaging » A. Godin, B. Lounis, L. Cognet *Biophys. J.*, 107 (2014) 1777
- « Hyper-bright Near-Infrared Emitting Fluorescent Organic Nanoparticles for Single Particle Tracking » E. Genin, Z. Gao, J. Varela, J. Daniel, T. Bsaibess, I. Gosse, L. Groc, L. Cognet, M. Blanchard-Desce *Adv. Mat* 26 (2014) 2258-2261
- « Identification and super-resolution imaging of ligand-activated receptor dimers in live cells » P. Winckler, L. Lartigues, G.Gianonne, F. De Giorgi, F. Ichas, J-B. Sibarita, B. Lounis and L. Cognet *Sci. Rep.*, 3 (2013) 2387
- « A highly specific gold nanoprobe for live-cell single-molecule imaging.» C. Leduc, S. Si, , J. Gautier, M. Soto-Ribeiro, B. Wehrle-Haller, A. Gautreau, G. Giannone, L. Cognet, and B. Lounis *Nano Lett.* 13, 4, (2013) 1489-1494
- « Integrins β1 and β3 exhibit distinct dynamic nanoscale organizations inside focal adhesions. » O. Rossier, V. Octeau, J.B. Sibarita, C. Leduc, B. Tessier, D. Nair, V. Gatterdam, O. Destaing, C. Albigès-Rizo, R. Tampé, L. Cognet, D. Choquet, B. Lounis & G. Giannone *Nat. Cell Biol.* 14 (2012) 1057-1067